助理研究员
曹银霞
文章来源: | 发布时间:2025-11-06 | 【打印】 【关闭】

曹银霞,女,中国科学院地理科学与资源研究所,地理信息科学与技术全国重点实验室 助理研究员
研究领域与研究方向:
高分辨率遥感卫星智能解译、遥感大模型设计与应用、城市三维重建
教育背景:(倒序排列)
2018.09-2023.06 武汉大学 遥感信息工程学院 博士
2014.09-2018.06 武汉大学 测绘学院 学士
工作经历:(倒序排列)
2025.02~至今,中国科学院地理科学与资源研究所,地理信息科学与技术全国重点实验室 助理研究员
2023.07-2025.01,香港理工大学,博士后
科研业绩:
1.Cao Y,Huang X,Weng Q. A SAM-adapted weakly-supervised semantic segmentation method constrained by uncertainty and transformation consistency[J]. International Journal of Applied Earth Observation and Geoinformation,2025,137: 104440.
2.Cao Y,Weng Q. A deep learning-based super-resolution method for building height estimation at 2.5 m spatial resolution in the Northern Hemisphere[J]. Remote Sensing of Environment,2024,310: 114241.
3.Cao Y,Huang X,Weng Q. A multi-scale weakly supervised learning method with adaptive online noise correction for high-resolution change detection of built-up areas[J]. Remote Sensing of Environment,2023,297: 113779.
4.Cao Y,Huang X. A full-level fused cross-task transfer learning method for building change detection using noise-robust pretrained networks on crowdsourced labels[J]. Remote Sensing of Environment,2023,284: 113371.
5.Cao Y,Huang X. A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2022,188: 157-176.
6.Cao Y,Huang X. A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities[J]. Remote Sensing of Environment,2021,264: 112590.
7.Huang X1,Cao Y1,Li J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images[J]. Remote Sensing of Environment,2020,244: 111802.
科研项目:
1. 国家自然科学基金青年科学基金项目,主持
2. 中国科学院战略性先导科技专项(B类),参与
联系方式:
通讯地址:北京市朝阳区大屯路甲11号 中国科学院地理科学与资源研究所
邮 编:100101
传 真:010-64889630
E-mail地址:caoyx@lreis.ac.cn
附件下载: